要因と主効果

要因 (Factor)

• 研究参加者間要因 (対応のない要因) (Between Subject Factor) 異なる集団において、同一変数を測定するときの、集団の違い 入院患者のうつ傾向得点に対する 年代 (40代,50代,60代) の影響

各研究参加者はいずれか1つの年代群に所属する

• 研究参加者内要因 (対応のある要因) (Within Subject Factor) 1つの集団において、同一変数を、異なる条件下で測定するときの、条件の違い

生徒の充実感得点に対する授業方法(TT,習熟度別,協同学習)の違いの影響

各生徒はすべての授業方法を経験する

主効果(Main Effect)

• ある要因において,群(集団,条件)の違いにより平均値に差異が認められるとき,その要因の主効果があると言う

• 主効果の例

入院患者のうつ傾向得点の平均値について、年代間で差がある 生徒の充実感得点の平均値について、授業方法間で差がある

- 群の違いにより、母平均に差があると言えるかどうかを判断する分析 法として分散分析 (Analysis of Variance: ANOVA) がある
- 2群の平均値の比較を分散分析で行っても間違いではないが、通常は t 検定を用いる。結果は同一となる

多群の平均値の比較の考え方

分析例: 1研究参加者間要因

入院患者のうつ傾向得点に対する 年代(40代,50代,60代)の影響を知りたい

年代群の違いによって、うつ傾向得点の平均値に 違いがあると言えるか?

年齢群	群内番号	うつ得点
40	1	29
40	2	32
:	:	:
40	73	24
50	1	24
50	2	28
:	:	:
50	81	36
60	1	23
60	2	36
:	:	:
60	84	20

group	Ν	М	SD
40代	73	26.56	5.71
50代	81	29.26	7.09
60代	84	27.51	6.69
全体	238	27.82	6.62

基本的な考え方

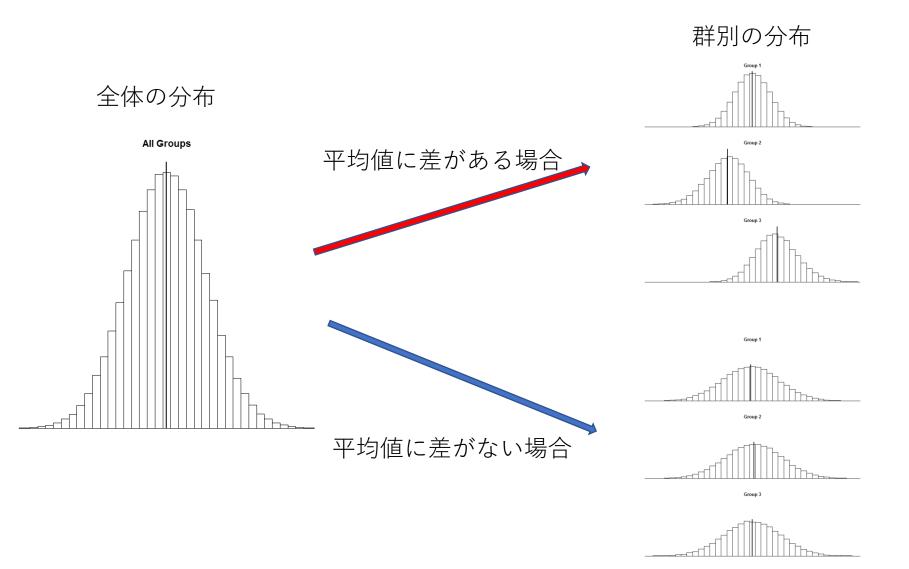
群間で母平均に差がある場合

各群のデータ分布は、それぞれの群の標本平均の 周りに集まり、各群の分布の位置にズレが見られ るだろう

群間で母平均に差がない場合

• 各群のデータ分布は、それぞれの群の標本平均の 周りになだらかに集まり、各群の分布の位置はだ いたい同じだろう

基本的な考え方のイメージ



データ・群平均・全体平均

- 群 j に所属する被験者 j のデータ: x_{ij}
 29, 32, …, 24, 28, …, 23, 36, …, 20
- 群jの平均:x̄_{.j}
 26.56, 29.26, 27.51
- 全体平均: $\bar{x}_{..} = 27.82$
- 少しトリッキーな式を考える $x_{ij} \bar{x}_{..} = x_{ij} \bar{x}_{.j} + \bar{x}_{.j} \bar{x}_{..}$
- 各辺を2乗したものをi, jについて合計する $\sum (x_{ij} \bar{x}_{..})^2 = \sum (x_{ij} \bar{x}_{.j} + \bar{x}_{.j} \bar{x}_{..})^2$

平方和 (Sum of Squares: SS)

• 右辺を整理すると次のようになる

$$\sum (x_{ij} - \bar{x}_{..})^2 = \sum (\bar{x}_{.j} - \bar{x}_{..})^2 + \sum (x_{ij} - \bar{x}_{.j})^2$$

$$a^2 = b^2 + c^2$$
 のような式 (三平方の定理)

$$\Sigma(x_{ij}-\bar{x}_{..})^2$$
 全体のデータの散らばり (SST: Total Sum of Squares) $\Sigma(\bar{x}_{.j}-\bar{x}_{..})^2$ 各群の平均値の散らばり (SSA: Sum of Squares of Factor A) $\Sigma(x_{ij}-\bar{x}_{.i})^2$ 群内のデータの散らばり (SSR: Residual Sum of Squares)

SST = SSA + SSR
 全体平方和 = 群間平方和 + 残差平方和

平方和の分割

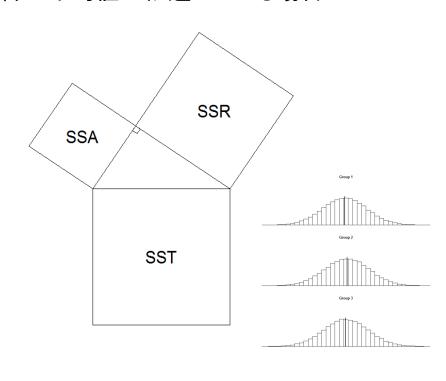
- ・全体のデータの散らばりは 全体平均に対する各群の平均値の散らばりと 群内における群平均からのデータの散らばりに分割 できる
- ・群間の平均値の差が大きければ 群間平方和は大きく 残差平方和は小さい
- ・群間の平均値の差が小さければ 群間平方和は小さく 残差平方和は大きい

平方和の分割のイメージ

各群の平均値が散らばっている場合

SSA SSR SST

各群の平均値が似通っている場合



直角は、統計学では「無相関」を表す データ全体の散らばりは、各群の平均値の散らばりと、 各群内のデータの散らばりに分けて考えることができる

F統計量

•
$$F = \frac{$$
群間平方和/自由度 $_1$
残差平方和/自由度 $_2$ = $\frac{SSA/(a-1)}{SSR/(N-a)}$

a: 群数

N:全体の被験者数

- 自由度1:群の自由度 a-1 第1~第a-1群でなければ第a群と分かる
- 自由度2:各群におけるデータの自由度の和 N-a $(n_1-1)+(n_2-1)+\cdots+(n_a-1)$

F統計量

• Fの式に $\frac{SSA}{SSR}$ という構造があるのがポイント

• 群間の平均値の差が大きい \rightarrow SSA 大きい \rightarrow F値 が大きい

• 群間の平均値の差が小さい \rightarrow SSA 小さい \rightarrow F値 が小さい

仮説の設定

- 帰無仮説「 $H_0: \mu_1 = \mu_2 = \mu_3$ 」 母集団において,各年代の入院患者のうつ得点の母平均はすべて等しい
- 対立仮説「*H*₁: Not *H*₀」

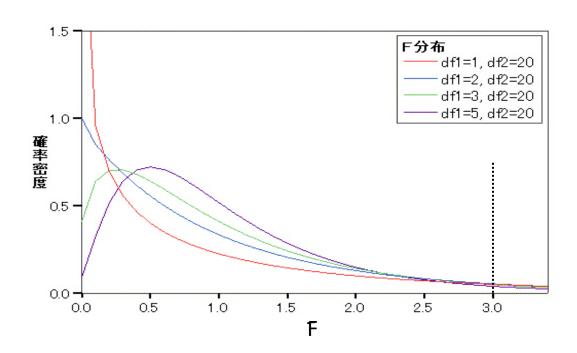
母集団において、各年代の入院患者のうつ得点の母平均は すべて等しい訳ではない

少なくともどれか1つの群の平均値は他の群と異なる(全部がバラバラとまでは求めていない)

• F値が限界値を超えて大きいとき, 群間の平均値に差があると判断する

分散分析の F 検定は両側検定か片側検定か?

- F値は0以上の値になる
- F値が0=分子が0=群間平方和が0=群間の平均値が等しい
- F値が大 = 分子が大 = 群間平方和が大 = 群間の平均値に差がある
- 分散分析のF検定は片側検定



なぜ「分散」分析?

• 多群の平均値を比較する検定は分散分析

各群の平均値の散らばりを検討するにあたって全体のデータの散らばり(分散)を各群の平均値の散らばり(分散)と各群内におけるデータの散らばり(分散)に分割して評価しているので「分散」分析